

SARALA BIRLA GROUP OF SCHOOLS A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PRE BOARD 1 (2025-26) MATHEMATICS MARKING KEY

Class: XII
Date: 07/11/25
Time: 3hrs
Max Marks: 80

Admission no: Roll no:

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case-based integrated units of assessment (04 marks each) with sub-parts.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks have been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

Sta	ieu.				
		<u>SECTIO</u>	<u>N A</u>		
1.	In what ratio must tea ₹70/kg?	at ₹60/kg be mixed with	tea at ₹80/kg so that th	e mixture costs	1m
	(a)1:1	(b) 2:3	(c) 3:2	(d) none of these	
2.	If $x \equiv 2 \pmod{7}$, then .	,			1m
	(a) 2 (b) 4 (c) 1 (d) 3				
	(a) 4	(b) 2	(c) 1	(d) none of these	
3.	If $-2x > 6$, then x is:				1m
	(a) $x > -3$	(b) $x < -3$		(d) none of these	
4.	The order of matrix A	$= [a_{ij}]$ where $a_{ij} = 3i -$	$2j$ for $1 \le i \le 2, 1 \le j$	\leq 3 is	1m
	$(a) 2 \times 2$	$(b) 2 \times 3$	(c) 3×2	(d) none of these	
5.	The sum of a matrix ar	nd its transpose is always	S		1m
	(a) Symmetric matrix	(b) Skew-symmetric	(c) Diagonal matrix	(d) none of these	
		matrix			
6.	The determinant of a scalar multiple of a matrix kA (where A is an $n \times n$ matrix) is			1m	
	(a) $k \det(A)$	(b) $k^n det(A)$	(c) $n k \det(A)$	(d) none of these	
7	If A is a square matrix and $ A = 0$, then A is			1m	
	(a) Invertible	(b) Singular	(c) Orthogonal	(d) none of these	
8	If A is a 3×3 matrix an	$d \det(A) = 5$, then $\det(A) = 5$	$(A^{-1}) = ?$		1m
	(a) 5	(b) 1/5	(c) -5	(d) none of these	
9	If $y = \log x$, then $\frac{dy}{dx} = \frac{1}{2}$?			1m
	$(a)\frac{1}{x}$	(b) <i>x</i>	(c) $\log x$	(d) none of these	

10	If $\frac{d}{dx}F(x) = 6x^2$, then $f(x) = 6x^3 + C$	F(x) = ?			1m
	$(a) 2x^3 + C$	(b) $3x^2 + C$	(c) $x^3 + C$	(d) none of these	
11	The order of the differential equation $ \frac{d^2y}{dx^2} + (\frac{dy}{dx})^3 + y = 0 $ is:				1m
	(a) 2	(b) 3	(c) 4	(d) none of these	
12	` '	tion $B(n, p)$, the mean is	. ,	(u) Hone of these	1m
	(a)np(1-p)	$(b)np^2$	(c) np	(d) none of these	
13		a limiting case of binomi	1 / 2		1m
		(a)n is large, p is small		(d) none of these	
14	The feasible region of an LPP is always:			1m	
	(a) A straight line	(b) A convex polygon or unbounded region	(c) A circle	(d) none of these	
15	• •	n selected for analysis is		1	1m
	(a) Parameter	(b) Sample	(c) Variable	(d) none of these	
16		of the sampling distribu			1m
	(a) Standard deviation	(b) Standard error	(c) Variance	(d) none of these	
17	The components of time series are:			1m	
	(a)Trend, seasonal, cyclical, irregular	(b) Mean, median, mode, range	(c) Profit, loss, cost, revenue	(d) none of these	
18	If a perpetuity pays ₹2,000 every year and the rate of interest is 8% p.a., its present value is:			1m	
	(a) ₹16,000	(b) ₹20,000	(c) ₹25,000	(d) none of these	
19	Assertion (A): The present value of a perpetuity decreases when the rate of interest increases. Reason (R): Present value of a perpetuity is inversely proportional to the rate of interest. (a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A). (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A). (c) Assertion (A) is true and Reason (R) is false. (d) Assertion (A) is false and Reason (R) is true.			1m	
20	Assertion (A): In a sinking fund, the total amount accumulated at the end of the period depends on the rate of interest and time. Reason (R): Sinking fund amount is calculated using the formula $A = R \times \frac{(1+i)^n-1}{i}$.			1m	
	 (a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A). (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not a correct explanation of Assertion (A). (c) Assertion (A) is true and Reason (R) is false. (d) Assertion (A) is false and Reason (R) is true. 				
		SECTIO	N B		
21	A boat goes 12 km dow speed of the boat in stil	nstream in 3 hours and		ours. Find the	2m

A:-	-	
	Downstream speed = $12/3 = 4$ km/h.	
	Upstream speed = $18/6=3$ km/h.	1m
	Boat speed $b=rac{ ext{downstream}+ ext{upstream}}{2}=rac{4+3}{2}=rac{7}{2}=3.5$ km/h. Stream speed $s=rac{4-3}{2}=0.5$ km/h.	
	Strong ground $a = \frac{4-3}{2} = 0.5 \text{ km/h}$	
	Stream speed $s = \frac{1}{2} = 0.3$ km/m.	
	Check: downstream $b+s=3.5+0.5=4$ (matches), upstream $b-s=3.5-0.5=3$ (matches).	
		1
	Or	1m
	In what ratio must coffee costing ₹200 per kg be mixed with coffee costing ₹280 per kg so	+
	that the mixture may be worth ₹240 per kg?	
	Let cheaper = 200, dearer = 280, mean = 240	
		1m
	$\mathrm{Ratio} = (280 - 240) : (240 - 200) = 40 : 40 = 1 : 1$	
	✓ Required ratio = 1:1	1m
22	Four bad eggs are mixed with ten good ones. If three eggs are drawn one after another	2m
	without replacement, find the probability distribution of the number of bad eggs drawn.	
	Or	
	A fair die is thrown once. Let X denote the number obtained. Find the mean and variance	
	of X.	_
A:-	Total eggs = 14 (4 bad, 10 good). Draw 3 without replacement. Let X = number of bad eggs drawn. Then	
	$X \in \{0,1,2,3\}$ and	
	$P(X=k) = rac{inom{4}{k}inom{10}{3-k}}{inom{14}{2}}, \qquad k=0,1,2,3.$	
	$\binom{14}{3}$	
	Since $\binom{14}{3}=364$, compute:	
	• $P(X = 0) = \frac{\binom{4}{0}\binom{10}{3}}{364} = \frac{1 \cdot 120}{364} = \frac{30}{91} \approx 0.3297.$ • $P(X = 1) = \frac{\binom{4}{1}\binom{10}{2}}{364} = \frac{4 \cdot 45}{364} = \frac{45}{91} \approx 0.4945.$ • $P(X = 2) = \frac{\binom{4}{2}\binom{10}{1}}{364} = \frac{6 \cdot 10}{364} = \frac{15}{91} \approx 0.1648.$ • $P(X = 3) = \frac{\binom{4}{3}\binom{10}{0}}{364} = \frac{4 \cdot 1}{364} = \frac{1}{91} \approx 0.0110.$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	• $P(X=1) = \frac{27.27}{48.400} = \frac{364}{364} = \frac{91}{91} \approx 0.4945.$	1m
	• $P(X=2) = \frac{\binom{2}{2}\binom{1}{1}}{364} = \frac{6 \cdot 10}{364} = \frac{15}{91} \approx 0.1648.$	
	• $P(X=3) = \frac{\binom{40010}{0}}{\binom{10}{0}} = \frac{4 \cdot 1}{4 \cdot 1} = \frac{1}{1} \approx 0.0110$	
	364 - 364 - 91	
	Check: $30/91 + 45/91 + 15/91 + 1/91 = 91/91 = 1$.	
	So the probability distribution is:	1m
	k 0 1 2 3	1111
	P(X=k) 30/91 45/91 15/91 1/91	
	Answer:	
	Possible values: 1, 2, 3, 4, 5, 6	
	$E(X) = rac{1+2+3+4+5+6}{6} = 3.5$	
	$1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 91$	1m
	$E(X^2) = rac{1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2}{6} = rac{91}{6}$	
	$Var(X) = E(X^2) - [E(X)]^2 = rac{91}{6} - (3.5)^2 = 2.92$	
	✓ Mean = 3.5, Variance = 2.92	1m
23	The probability of a man hitting a target in a single shot is $\frac{1}{4}$. How many times must he	2m
	7	
	fire so that the probability of hitting the target at least once is greater than $\frac{2}{3}$?	

A:-		
11.	Let the man fire n times.	
	Probability of hitting in one shot $=p=rac{1}{4}.$	
	Probability of missing in one shot $=1-p=rac{3}{4}.$	
	P(hitting at least once) = 1 - P(missing all)	
	$\Rightarrow 1 - \left(\frac{3}{4}\right)^n > \frac{2}{3}$	
	$\Rightarrow \left(\frac{3}{4}\right)^n < \frac{1}{3}$	1m
	Taking logarithms on both sides:	
	$n\log\left(rac{3}{4} ight)<\log\left(rac{1}{3} ight)$	
	$n > rac{\log(1/3)}{\log(3/4)} = rac{-\log 3}{\log(4/3)} pprox 3.82$	
	$\therefore n=4$	1m
24	A machine is purchased for ₹30,000. Its scrap value after 13 years is estimated to be ₹4,000. Find the annual depreciation using the straight-line method.	2m
A:-	74,000. Find the aimual depreciation using the straight-line method.	
	$ ext{Annual Depreciation} = rac{ ext{Cost} - ext{Scrap Value}}{ ext{Life}}$	1m
	$=\frac{30000-4000}{13}=\frac{26000}{13}=₹2000$	1m
25	A start-up company invested ₹3,00,000 in shares for 5 years. The value of this investment	2m
	was ₹3,50,000 at the end of the second year, ₹3,80,000 at the end of the third year, and on maturity, the final value stood at ₹4,50,000. Calculate the Compound Annual Growth	
	Rate (CAGR) on the investment.	
	[Given that $(1.5)^5 = 1.084$]	
A:-	Formula for CAGR:	
A	$ ext{CAGR} = \left(rac{ ext{Final Value}}{ ext{Initial Value}} ight)^{rac{ ext{i}}{n}} - 1$	
	Substitute values:	
	$ ext{CAGR} = \left(rac{450000}{300000} ight)^{rac{1}{5}} - 1$	
	$= (1.5)^{\frac{1}{5}} - 1$	1m
	=1.084-1=0.084	
	$\mathrm{CAGR} = 8.4\%$	
	✓ Compound Annual Growth Rate = 8.4%	1m
	SECTION C	
26	Two pipes A and B can fill a cistern in 12 hours and 15 hours, respectively. A third pipe C can empty the cistern in 20 hours. All three pipes are opened together. (a) Find the time in which the cistern will be filled. (b) If pipe C is closed after 4 hours, find how much more time will be required to fill the	3m
	cistern.	

A = $1/12 = 5/60$ B = $1/15 = 4/60$ C (emptying) = $-1/20 = -3/60$ All three open: net rate $\frac{5+4-3}{60} = \frac{6}{60} = \frac{1}{10} \text{ cistern/hour}$ Im So time to fill = reciprocal = 10 hours. Work done in 4 hours = $4 \times \frac{1}{10} = \frac{4}{10} = \frac{2}{5}$. Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. In In In In In In In In In I
C (emptying) = $-1/20 = -3/60$ All three open: net rate $\frac{5+4-3}{60} = \frac{6}{60} = \frac{1}{10} \text{ cistern/hour}$ Im So time to fill = reciprocal = 10 hours. If C is closed after 4 hours: Work done in 4 hours = $4 \times \frac{1}{10} = \frac{4}{10} = \frac{2}{5}$. Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. In In In In In In In In In I
All three open: net rate $\frac{5+4-3}{60} = \frac{6}{60} = \frac{1}{10} \text{ cistern/hour}$ Im So time to fill = reciprocal = 10 hours. If C is closed after 4 hours: Work done in 4 hours = $4 \times \frac{1}{10} = \frac{4}{10} = \frac{2}{5}$. Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. In 27 In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? A:- (a) Speed of A = $\frac{200}{25} = 8 \text{ m/s}$ Speed of B = $\frac{200}{25} = \frac{50}{7} \approx 7.14 \text{ m/s}$ When A finishes 200 m in 25 s. Distance covered by B in 25 s = 7.14 × 25 = 178.5 m So A beats B by 200 - 178.5 = 21.5 m
$\frac{5+4-3}{60} = \frac{6}{60} = \frac{1}{10} \text{ cistern/hour}$ Im So time to fill = reciprocal = 10 hours. If C is closed after 4 hours: Work done in 4 hours = $4 \times \frac{1}{10} = \frac{4}{10} = \frac{2}{5}$. Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. Im In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? (a) Speed of A = $\frac{200}{25} = 8 \text{ m/s}$ Speed of B = $\frac{200}{25} = \frac{50}{20} \approx \frac{50}{20} \approx 7.14 \text{ m/s}$ When A finishes 200 m in 25 s, Distance covered by B in 25 s = 7.14 × 25 = 178.5 m So A beats B by 200 − 178.5 = 21.5 m A beats B by 200 − 178.5 = 21.5 m
So time to fill = reciprocal = 10 hours. If C is closed after 4 hours: Work done in 4 hours = $4 \times \frac{1}{10} = \frac{4}{10} = \frac{2}{5}$. Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. Im In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? A:- (a) Speed of A = $\frac{200}{250} = 8$ m/s Speed of B = $\frac{200}{250} = \frac{50}{20} \approx 7.14$ m/s When A finishes 200 m in 25 s, Distance covered by B in 25 s = 7.14 × 25 = 178.5 m So A beats B by 200 - 178.5 = 21.5 m
So time to fill = reciprocal = 10 hours. If C is closed after 4 hours: Work done in 4 hours = $4 \times \frac{1}{10} = \frac{4}{10} = \frac{2}{5}$. Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. Im In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? A:- (a) Speed of A = $\frac{200}{250} = 8$ m/s Speed of B = $\frac{200}{250} = \frac{50}{20} \approx 7.14$ m/s When A finishes 200 m in 25 s, Distance covered by B in 25 s = 7.14 × 25 = 178.5 m So A beats B by 200 - 178.5 = 21.5 m
If C is closed after 4 hours: Work done in 4 hours = $4 \times \frac{1}{10} = \frac{4}{10} = \frac{2}{5}$. Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. Im In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? (a) Speed of A = $\frac{200}{25} = 8$ m/s Speed of B = $\frac{200}{25} = \frac{50}{7} \approx 7.14$ m/s When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5$ m So A beats B by 200 – $178.5 = 21.5$ m A beats B by 21.5 m
Work done in 4 hours = $4 \times \frac{1}{10} = \frac{4}{10} = \frac{2}{5}$. Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. Im In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? A:- (a) Speed of A = $\frac{200}{25} = 8$ m/s Speed of B = $\frac{200}{28} = \frac{50}{7} \approx 7.14$ m/s When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5$ m So A beats B by 200 - $178.5 = 21.5$ m No A beats B by 21.5 m A beats B by 21.5 m
Remaining = $1 - \frac{2}{5} = \frac{3}{5}$. A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. 1m 27 In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? (a) Speed of A = $\frac{200}{25} = 8 \text{ m/s}$ Speed of B = $\frac{200}{25} = \frac{8}{5} \approx 7.14 \text{ m/s}$ When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5 \text{ m}$ So A beats B by 200 - $178.5 = 21.5 \text{ m}$ A beats B by 21.5 m
A + B rate = $\frac{1}{12} + \frac{1}{15} = \frac{9}{60} = \frac{3}{20}$ cistern/hour. Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. 1m 27 In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? A:- (a) Speed of A = $\frac{200}{25} = 8$ m/s Speed of B = $\frac{200}{28} = \frac{50}{7} \approx 7.14$ m/s When A finishes 200 m in 25 s, Distance covered by B in 25 s = 7.14 × 25 = 178.5 m So A beats B by 200 - 178.5 = 21.5 m A beats B by 21.5 m
Time to finish = $\frac{3/5}{3/20} = \frac{3}{5} \times \frac{20}{3} = 4$ hours. 1m 27 In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? (a) Speed of A = $\frac{200}{28} = 8$ m/s Speed of B = $\frac{200}{28} = \frac{50}{7} \approx 7.14$ m/s When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5$ m So A beats B by 200 - $178.5 = 21.5$ m 2 A beats B by 21.5 m
27 In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? A:- (a) Speed of $A = \frac{200}{25} = 8 \text{ m/s}$ Speed of $B = \frac{200}{28} = \frac{50}{7} \approx 7.14 \text{ m/s}$ When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5 \text{ m}$ So A beats B by $200 - 178.5 = 21.5 \text{ m}$ A beats B by 21.5 m
27 In a 200 m race, A can run 200 m in 25 seconds, and B in 28 seconds. (a) By what distance does A beat B? (b) By what time does A beat B? A:- (a) Speed of $A = \frac{200}{25} = 8 \text{ m/s}$ Speed of $B = \frac{200}{28} = \frac{50}{7} \approx 7.14 \text{ m/s}$ When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5 \text{ m}$ So A beats B by $200 - 178.5 = 21.5 \text{ m}$ A beats B by 21.5 m
(a) By what time does A beat B? (b) By what time does A beat B? A:- (a) Speed of A = $\frac{200}{25}$ = 8 m/s Speed of B = $\frac{200}{28}$ = $\frac{50}{7}$ \approx 7.14 m/s When A finishes 200 m in 25 s, Distance covered by B in 25 s = 7.14 × 25 = 178.5 m So A beats B by 200 - 178.5 = 21.5 m A beats B by 21.5 m
(b) By what time does A beat B? A:- (a) Speed of A = $\frac{200}{25} = 8 \text{ m/s}$ Speed of B = $\frac{200}{28} = \frac{50}{7} \approx 7.14 \text{ m/s}$ When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5 \text{ m}$ So A beats B by $200 - 178.5 = 21.5 \text{ m}$
A:- (a) Speed of A = $\frac{200}{25}$ = 8 m/s Speed of B = $\frac{200}{28}$ = $\frac{50}{7}$ \approx 7.14 m/s When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5$ m So A beats B by $200 - 178.5 = 21.5$ m
Speed of A = $\frac{200}{25} = 8 \text{ m/s}$ Speed of B = $\frac{200}{28} = \frac{50}{7} \approx 7.14 \text{ m/s}$ When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5 \text{ m}$ So A beats B by $200 - 178.5 = 21.5 \text{ m}$
Speed of B = $\frac{200}{28} = \frac{50}{7} \approx 7.14 \text{ m/s}$ When A finishes 200 m in 25 s, Distance covered by B in 25 s = $7.14 \times 25 = 178.5 \text{ m}$ So A beats B by $200 - 178.5 = 21.5 \text{ m}$ \checkmark A beats B by 21.5 m
Distance covered by B in 25 s = $7.14 \times 25 = 178.5 \text{ m}$ So A beats B by $200 - 178.5 = 21.5 \text{ m}$ \checkmark A beats B by 21.5 m
So A beats B by 200 − 178.5 = 21.5 m ✓ A beats B by 21.5 m
✓ A beats B by 21.5 m
(b)
Alternatively, time taken by B to run 200 m = 28 s
Time taken by A = 25 s
So, A beats B by $28-25=3~{ m seconds}$
✓ A beats B by 3 seconds
Show that the local maximum value of $x + 1/x$ is less than local minimum value. 3m
A:- 1. Differentiate:
$f'(x) = 1 - rac{1}{x^2} = rac{x^2 - 1}{x^2}.$
Critical points when $f'(x)=0$ give $x^2-1=0$, so $x=\pm 1$.
2. Second derivative:
d = 1
$f''(x)=rac{d}{dx}\Bigl(1-rac{1}{x^2}\Bigr)=rac{2}{x^3}.$
Evaluate at the critical points:
• $f''(1) = 2 > 0 \rightarrow x = 1$ is a local minimum. Value: $f(1) = 1 + 1 = 2$.
$f''(-1) - \frac{2}{x} = -2 < 0 + x = -1$ is a local maximum Value, $f(-1) = -1 = 1 = -2$
• $f''(-1) = \frac{2}{(-1)^3} = -2 < 0$ $\rightarrow x = -1$ is a local maximum. Value: $f(-1) = -1 - 1 = -2$.
• $f(-1) = \frac{1}{(-1)^3} = -2 < 0 \Rightarrow x = -1$ is a local maximum. Value: $f(-1) = -1 - 1 = -2$. Thus the local maximum value is -2 and the local minimum value is 2 . Clearly
Thus the local maximum value is -2 and the local minimum value is 2 . Clearly

	Show that the local maximum value of $f(x) = x^2 + \frac{1}{x^2}$ is greater than its local minimum	
A .	value.	
A:-	Solution:	
	$f(x) = x^2 + \frac{1}{x^2}$	
		1m
	Differentiate:	
	$f'(x) = 2x - \frac{2}{x^3} = \frac{2(x^4-1)}{x^3}$	2m
29	Solve the differential equation:	3m
	$\frac{dy}{dx} = e^{x+y} + x^2 e^y$	
	ux	
	Or	
	Solve the differential equation dy	
	$\frac{dy}{dx} = e^{x+y} + xe^y$	
A:-		1m
A:-	We have	1111
	$rac{dy}{dx}=e^{x+y}+x^2e^y=e^yig(e^x+x^2ig).$	
	This is separable. Divide by e^y and separate variables:	
	$e^{-y}dy=(e^x+x^2)dx.$	1m
	Integrate both sides:	
	$\int e^{-y}dy = \int (e^x+x^2)dx \Rightarrow -e^{-y} = e^x+rac{x^3}{3}+C,$	1m
	Factor out e^y :	
	$rac{dy}{dx}=e^y(e^x+x)$	
	Separate variables:	
	$e^{-y}dy=(e^x+x)dx$	1m
	Integrate both sides:	
	$\int e^{-y} dy = \int (e^x + x) dx$	
	$-e^{-y}=e^x+\frac{x^2}{2}+C$	
	Simplify:	
		2m
	$e^{-y}+e^x+\frac{x^2}{2}=C$	2111
30	A company produces two types of biscuits, A and B.	3m
	Each packet of A requires 4 kg of flour and 2 kg of sugar.	
	Each packet of B requires 2 kg of flour and 4 kg of sugar. The company has 40 kg of flour and 48 kg of sugar available per day.	
	The company has 40 kg of flour and 48 kg of sugar available per day.	

	If the profit per packet of A and B is ₹6 and ₹8 respectively, formulate an LPP to maximize profit.	
A:-	Let x,y be packets of A and B.	
	Maximize $Z=6x+8y$	
	subject to	
	$2x+y\leq 20, \qquad x+2y\leq 24, \qquad x,y\geq 0.$	
		2m
		1m
	Or	
31	A company establishes a sinking fund to repay a debt of ₹2,50,000 due in 4 years. Annual	3m
	contributions are made at the end of each year. Find the amount of each annual deposit if	
A:-	the rate of interest is 18% per annum compounded annually. Given,	
11.	$A= \cite{4}{2}, 50,000, i=18\%=0.18, n=4$	
	The formula for a sinking fund is: $(1+i)^n = 1$	
	$A=R\times\frac{(1+i)^n-1}{i}$	1m
	Substitute the given values:	1111
	$2,50,000=R\times\frac{(1+0.18)^4-1}{0.18}$	
	Now calculate step-by-step:	
	$(1+0.18)^4 = (1.18)^4 = 1.938$	
	(1.938-1)=0.938	1m
	$rac{0.938}{0.18} = 5.211$	
	So,	
	$2,50,000 = R \times 5.211$	
	$R = rac{2,50,000}{5,211} = 47,990.78$	
	$R = \frac{1}{5.211} = 47,990.78$	
		1m
	SECTION D	1111
	Colve by metric methods	5m
32	Solve by matrix method: $2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 2z = 12$	3111

A:-	Solution outline:	2m
	$A = egin{bmatrix} 2 & 1 & 1 \ 3 & 2 & 3 \ 1 & 4 & 2 \end{bmatrix}, \ B = egin{bmatrix} 10 \ 18 \ 12 \end{bmatrix}$	2m
	$ A = 2(2 \cdot 2 - 3 \cdot 4) - 1(3 \cdot 2 - 3 \cdot 1) + 1(3 \cdot 4 - 2 \cdot 1) = 2(4 - 12) - (6 - 3) + (12 - 2) = -16 - 3 + 10 = -9.$	
	Non-zero \Rightarrow unique solution. After solving: $x=2,\;y=3,\;z=2$. $\ensuremath{\checkmark}$	1m
33	The fixed cost of producing an item is ₹6500 and the variable cost per item is ₹12.50. Find: (i) The cost function. (ii) The total cost of producing 75 items. (iii) The average cost of producing 400 items. Also, draw a suitable graph showing Fixed Cost (TFC), Variable Cost (TVC) and Total	5m
	Cost (TC).	
	Or	
	A firm has a fixed cost of ₹10,000 and the variable cost per item is ₹18.	
	Find: (i) The cost function	
	(ii) The total cost of producing 150 items	
	(iii) The average cost of producing 400 items	
A .		
A:-	Given:	
	Fixed Cost (TFC) = ₹6500	
	Variable Cost per unit = ₹12.50	
	variable cost per unit = 112.50	1m
	(i) Cost Function	
	C(x) = 6500 + 12.5x	
	where x = number of items produced.	
	(ii) Total Cost for 75 items	
	(ii) Total Cost for 75 items $C(75) = 6500 + 12.5(75) = 6500 + 937.5 = ₹7437.50$	2m
		2m
	C(75) = 6500 + 12.5(75) = 6500 + 937.5 = ₹7437.50	2m
	C(75) = 6500 + 12.5(75) = 6500 + 937.5 = ₹7437.50 (iii) Average Cost for 400 items	2m

	C(x) =	= 10000 + 18x		
	(ii) $C(150) = 10000 + 18(150) = 10000 + 27$	700 = 12700		
	(iii) $AC(400) = rac{10000 + 18(400)}{400} = rac{10000 + 7200}{400} = 4$	3		
	✓ Answers:			2m
	(i) $C(x) = 10000 + 18x$			
	(ii) ₹12,700			1m
	(iii) ₹43			2m
34	The production of cement (in tonnes) by		is given below:	5m
	Year 1 2 3 4 5 6 Production(tonnes) 4 5 5 6 7 8			
	110duction(tonnes) 4 3 3 0 7 6	9 0 10		
A:-	Calculate the trend values for the above smethod. Trend Values Summary:		ly moving average	
	Year	Trend Value		2m
	2	4.67		
	3	5.33		
	4	6.00		
	5	7.00		2m
	6	8.00		2111
	7	8.33		
	8	9.00		
	Final Trend Values (3-yearly moving averages	s):		
	4.67, 5.33, 6.00, 7.00, 8.00, 8.33, 9.00			1m
35	Madhu exchanged her old car valued at ₹ paid ₹x as down payment and agreed to p of ₹21,000 each. The rate of interest char Find the value of x, given that (1.0075)	pay the balance in 20 oged is 9% per annum	equal monthly instalments	5m
	Rohit exchanged his old bike valued at \mathbb{Z} 4 He paid \mathbb{Z} 4 as down payment and agreed instalments of \mathbb{Z} 10,000 each. Interest rate = 10% p.a., compounded more Given: $(1.008333)^{-12} = 0.9052868$ Find the value of x .	Or 40,000 for a new one p to pay the balance in		

A:-	Total due after exchange = ₹6,50,000 – ₹1,50,000 = ₹5,00,000.	1m
	Present value of 20 monthly instalments $R=21,000,\ r=0.0075,\ n=20$:	2m
	$P = R \cdot \frac{1 - (1 + r)^{-n}}{r} = 21000 \cdot \frac{1 - 0.86118985}{0.0075} = 21000 \times 18.50802 = ₹3,88,668.42$	
	Down payment $x=5,00,000-3,88,668.42=$ ₹ $1,11,331.58 \approx $ ₹ $1,11,332.$	
	Answer: ₹1,11,332 (approx.)	2m
	Price difference = ₹(1,60,000 – 40,000) = ₹1,20,000 Loan amount = ₹(1,20,000 – x)	1m
	$(1,20,000-x)=10,000 imesrac{1-(1.008333)^{-12}}{0.008333}$ 1-0.9052868 0.0947132	2m
	$=10,000 imesrac{1-0.9052868}{0.008333}=10,000 imesrac{0.0947132}{0.008333}=10,000 imes11.3656=1,13,656 \ 1.20,000-x=1.13,656 \Rightarrow x=6,344$	
	1, 20, 000 $-x = 1$, 13, 030 $\Rightarrow x = 0$, 344 ✓ Answer: ₹6.344	2
	SECTION E	2m
36	A digital safe uses a 4-digit PIN where each digit follows modulo 10 arithmetic (i.e., after	4m
30	9, it goes back to 0).	4111
	, 6	
	For example, adding 7 to 6 gives $(7 + 6) \pmod{10} = 3$.	
	The original PIN is 5836. The safe's system performs the following operations each time	
	it's accessed:	
	 Add 7 to the first digit, 	
	 Add 8 to the second digit, 	
	Add 9 to the third digit,	
	 Add 6 to the fourth digit, all under modulo 10. 	
	Answer the following:	
	(i) Find the new PIN after the first access.	
	(ii) Find the PIN after the second access (apply the same operation again).	
	(iii) How many accesses will return the PIN to its original form?	
	Or	
	(iii) If the third digit after 5 accesses becomes 5, verify the result using modular arithmetic.	
A:-	(a) 2622	
		1m
	(b) 9418	1m
	(c) 10 accesses	2m
	(d) After 5 accesses the third digit = 8 (so it does not become 5).	
37	The total profit function of a company is given by	4m
37	$P(x) = -5x^2 + 125x + 37500$	7111
	whom a manuagents the number of units and used	
	where x represents the number of units produced.	
	Based on the above information, answer the following:	
	(i) What will be the production when the profit is maximum?	
	(ii) What will be the maximum profit?	
	Or	
	When the production is 2 units, what will be the profit of the company?	
	(iii) Find the interval in which the profit function is strictly increasing.	
	CL VII DD1 ADDLIED MATHEMATICS MV 2025 26	40/44

A:-	(i) Production for maximum profit = 12.5 units	1m
	(ii) Maximum profit = ₹38,281.25	
	Or Profit when 2 units are produced = ₹37,730	2m
	(iii) Profit is strictly increasing for $x < 12.5$	1m
38	An urn contains 25 balls, 10 marked X and 15 marked Y. A ball is drawn at random, its mark noted, and then it is replaced. Six balls are drawn in this way. Find: (i) Probability that all six bear mark X. (ii) Probability that not more than 2 balls bear mark Y.	4m
	(iii) Probability that the number of balls with Xand Ymarks are equal. Or	
	(iii) Probability that at least one ball bears mark Y.	
A:-	(i) $P(ext{all } 6 ext{ are } X) = \left(rac{2}{5} ight)^6 = rac{64}{15625} = 0.004096.$	1m
	(ii) $P(ext{not more than 2 are }Y)=P(Y\leq 2)=rac{112}{625}=0.1792.$	1m
	(iii) $P(ext{equal numbers of }X ext{ and }Y)=P(X=3)=rac{864}{3125}=0.27648.$	
	Or (alternate iii) $P(ext{at least one }Y)=1-\left(rac{2}{5} ight)^6=rac{15561}{15625}=0.995904.$	2m

*************Best of luck********